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This review explores the role of oxytocin in the mediation of select social
behaviours, with particular emphasis on female rodents. These behaviours
include social recognition, social learning, pathogen detection and avoid-
ance, and maternal care. Specific brain regions where oxytocin has been
shown to directly mediate various aspects of these social behaviours, as
well as other proposed regions, are discussed. Possible interactions between
oxytocin and other regulatory systems, in particular that of oestrogens and
dopamine, in the modulation of social behaviour are considered. Similarities
and differences between males and females are highlighted.

This article is part of the theme issue ‘Interplays between oxytocin and
other neuromodulators in shaping complex social behaviours’.
1. Introduction
Oxytocin (OT) is a mammalian neuropeptide that has been extensively shown to
affect various functions and behaviours. These include physiological functions
such as immune responses, analgesic effects, lactation, uterine contractions
during birth, sexual activity and stress responses, as well as socially based behav-
ioural functions, such as social recognition, pair bonding and parental behaviour
[1–3]. OT is mainly produced in the paraventricular nucleus (PVN) and supra-
optic nucleus (SON) of the hypothalamus and can be either released
peripherally into the bloodstream through projections to the pituitary gland or
released to various brain regions to exert its behavioural effects [4]. OT has a
single G-protein coupled receptor (OTR), which is widespread throughout the
brain, including many of the regions where projections form the PVN and
SON reach, and where social behaviours are mediated [5–7]. This review will
explore some of the research that has been conducted investigating the effects
of OT on social behaviour, focusing on females but also briefly discussing sex
differences. OT’s role in mediating social recognition, social learning, pathogen
detection and avoidance and maternal care, including the specific brain regions
where OT is proposed to act and other neurochemicals OT may interact with to
mediate these behaviours, will be discussed.
2. Social recognition
Social recognition is defined here as the ability to distinguish between conspeci-
fics based on various cues and factors of a conspecific, such as sex, condition,
health, relatedness, reproductive state, hierarchal status, familiarity, through to
true individual recognition [8]. This ability to recognize and/or distinguish
between individuals is important for the development of social bonds. For
example, the way a mother would behave towards its offspring would be very
different to how it would behave towards an intruder. The ability to recognize
that one individual is related to them and that another is not allows this
change of behaviour towards kin and offspring. Social recognition also allows
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an individual to modulate its behaviour based on the recog-
nition of the quality, condition, and status of another
individual. Familiarity recognition is especially important in
that it allows you to not treat individuals like strangers each
time they are encountered [9].

In laboratory settings social recognition is generally inves-
tigated with rodents, with familiarity being most commonly
examined. Typically, one of two paradigms are used, either
habituation/dishabituation or social discrimination, both of
which capitalize on the natural preference for novelty
shown by laboratory rodents. In a habituation/dishabituation
paradigm the experimental rodent is exposed to a stimulus
rodent several times, habituating the experimental rodent to
the stimulus. Then a new stimulus animal is presented, and
if an increase in the amount of investigation is observed, it
is concluded that the experimental rodent ‘knows’ the
social stimulus is different, thus indicating that it remem-
bered the previous familiar stimulus [10]. In the social
discrimination paradigm, one or two stimulus conspecifics
are presented to the experimental animal either once or a
number of times. Then in the test phase, two stimuli are pre-
sented: however, one has been replaced with a new
individual. If the experimental subject investigates the novel
social stimulus more than the previously encountered (fam-
iliar) stimulus, it suggests it recognizes the familiar
individual [11]. While there is evidence that several neuro-
transmitters, peptides, and steroidal hormones can affect
social recognition, OT has received the predominant attention.

Early studies into OT’s effect on social recognition looked
at the effect of ‘knocking out’ the gene for OT (OTKO). It was
found that when OT was knocked out in female mice social
recognition was impaired [12,13]. This was shown in the
habituation/dishabituation paradigm, where the OTKO
mice neither habituated to the repeatedly presented stimulus
mouse nor increased their investigation of a novel mouse, as
well as in the social discrimination paradigm, where the
OTKOmice showed equal investigation of concomitantly pre-
sented familiar and novel stimulus mice [12,13]. In another
study, it was found that knocking out OT in pregnant females
resulted in an extension of the Bruce effect. That is the inter-
ruption of pregnancy normally seen in response to a novel
male, which now occurred with both a novel male and its
mate, suggesting the females did not recognize the male
they had previously mated with [14]. Many of the OTKO
studies show impaired social recognition, but it is possible
that OT’s effect on social recognition is specific to recognition
within the same strain, as in an experiment where OTKO
male mice were tested in a social recognition paradigm
using female stimulus mice from different strains, social rec-
ognition remained intact [15]. More research is needed to see
if this intrastrain specificity extends to females as well.

Brain regions associated with OT’s mediation of social
recognition have been investigated. Early investigations
revealed that the intracerebroventricular (ICV) administration
of an OTR antagonist to female rats resulted in impaired
social recognition in a choice test between familiar and
novel juvenile rats [16]. The medial amygdala (MeA) has
also been examined (figure 1). Initial studies showed that
OTKO male mice were impaired in social recognition,
which could be recovered with OT administered to the
MeA [17]. Subsequently, it was shown that the MeA is also
important for the OT mediation of social recognition in
female mice. Blocking the gene for the OTR in the MeA
with antisense oligonucleotides in wild-type female mice
resulted in impaired social recognition similar to what is
seen in OTKO females [18]. Similarly, the administration of
an OTR antagonist to the MeA of female mice impaired
their ability to distinguish between familiar and novel
female stimulus mice, suggesting impaired social recognition
[19]. These results show the importance of the MeA for social
recognition. The MeA receives direct projections from the
main and accessory olfactory bulbs (OBs), making it a site
where incoming olfactory cues can be processed to recognize
a conspecific [20]. Social recognition may also include
emotional recognition. Male and female mice can discrimi-
nate positive and negative emotional states of other mice,
and chemogenetic inhibition of PVN OT projections to the
central amygdala abolishes this [21]. There is also evidence
suggesting that OT acts in the OB to facilitate social recog-
nition (figure 1). Vaginocervical stimulation in female rats
in the proestrus phase caused an increase in OT release in
the OB, and resulted in prolonged social recognition
memory of a juvenile stimulus [22]. This study also showed
that this prolonging effect on social recognition could be
blocked by the administration of an OTR antagonist into
the OB, suggesting OT also acts directly in the OB to mediate
social recognition [22]. Similarly, there is evidence that OT in
the olfactory system mediates social recognition by improv-
ing the signal-to-noise ratio in odour processing, as
administration of an OT agonist in the accessory olfactory
nucleus (AON) activated excitatory projections from this
region onto inhibitory interneurons in the main OB in
female rats [23]. Additionally, the selective deletion of OTRs
in the AON of male mice impaired social recognition, show-
ing the importance of OT in odour processing for social
recognition [23]. The posterior bed nucleus of the stria termi-
nus (pBNST) is another brain region where OT can mediate
social recognition (figure 1). Infusions of an OTR antagonist
into pBNST of female rats was shown to impair social recog-
nition of juvenile conspecifics [24]. However, it was also
found that in female rats, pBNST infusions of OT did not
result in prolonged social recognition of the juvenile stimulus
rats [24]. This suggests that although OT in the pBNST is
needed for social recognition, increased release of OT
does not enhance recognition [24]. OT has also been shown
to modulate female social behaviour and recognition through
effects in prefrontal cortex (PFC) interneurons that express
OTRs (figure 1). Silencing or antagonization of the inter-
neuron OTRs in the medial PFC (mPFC) of females
abolished female sociosexual responses to males [25]. These
studies suggest that OT and its receptor are both necessary
for the proper functioning of social recognition.

To date, other brain regions where OT mediates social rec-
ognition in females are not known with research having been
primarily focused on males. In males, social recognition can
be mediated by OT in the MeA, OB and pBNST
[17,24,26,27]. For example, discrimination of male and
female odours is impaired when OTRs are selectively deleted
from aromatase-positive neurons of the MeA [28]. In males,
OT has also been found to mediate social recognition in
additional regions such as the lateral septum, medial preoptic
area (MPOA), and hippocampus [29–33] (figure 1). Whether
or not OT can affect social recognition in females in these
regions as well remains to be investigated.

The effect of OT on social recognition in females has been
suggested to be regulated by oestrogens, which have been
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Figure 1. Brain regions where oxytocin acts to mediate social recognition. The brain regions shown are where oxytocin or the OTR acts to mediate social recognition.
Blue circles represent regions in females where oxytocin mediates social recognition, and red triangles represent regions in males where oxytocin mediates social
recognition. MOB, main olfactory bulb; AOB, accessory olfactory bulb; mPFC, medial prefrontal cortex; LS, lateral septum; pBNST, posterior bed nucleus of the stria
terminus; MPOA; medial preoptic area; DH, dorsal hippocampus; MeA, medial amygdala. (Online version in colour.)
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shown to play an important role in the regulation of the oxy-
tocinergic system. OT and OTR levels fluctuate across the
oestrous cycle, oestrogens can regulate the production and
release of OT and the OTR, and oestrogens promote OT
and OTR mRNA synthesis [34]. There are three main oestro-
gen receptors, through which oestrogens can exert their
effects, oestrogen receptors alpha (ERα) and beta (ERβ) and
the G-protein coupled oestrogen receptor (GPER) [35]. Simi-
lar to the findings with OTKO mice, it has been shown that
ERαKO or ERβKO in female mice also results in impaired
social recognition [12,13]. Similarly, the administration of
17β-oestradiol (E2) or ER agonists systemically, and into var-
ious brain regions such as the MeA and dorsal hippocampus,
facilitates social recognition in female mice [36–41]. These
findings raised the possibility of an interaction between the
oestrogen and OT systems in the regulation of social recog-
nition. There is some experimental evidence for this
proposed interaction. Infusion of E2 into the PVN of female
mice resulted in a facilitation of social recognition, which
could be blocked by infusing into the MeA a subeffective
dose of an OTR antagonist, that is a dose that by itself
does not block social recognition [19]. This supports the pro-
posal that oestrogens mediate the facilitatory effects of OT on
social recognition in female mice.
3. Social learning
There is also evidence that OT can mediate social learning.
Social learning is a highly adaptive form of learning that
may be defined as ‘learning that is influenced by observation
of, or interaction with, another animal (typically a conspeci-
fic) or its products’ [42–44]. This type of learning occurs in
many species and may intercept the consequences of individ-
ual trial-and-error learning which has proven to be time-
consuming and possibly maladaptive [45,46].
Social learning can be tested using several paradigms,
including mate choice copying and social transmission of
food preferences (STFP) [8,47]. Mate choice copying refers
to an individual’s choice in mate being influenced by either
the actual or apparent mate choice of another individual,
suggesting animals can socially learn and gain information
about potential mates from the behaviour of conspecifics
[47]. A mate choice copying paradigm involves two stages.
In stage one an individual observes the mating or a proxy
of mating (e.g. odours associated with a potential mate)
between a male and female, followed by stage two, in
which the observer is presented with a choice between the
individual they observed being chosen and a novel potential
mate [47]. Typically, they will show a preference for the indi-
vidual they previously observed being chosen, indicating
that social learning of mate choice occurred. It should be
noted that mate copying incorporates both social recognition
and social learning.

In an odour-based mate choice copying task, wild-type
female mice showed a preference for a male odour paired
with an oestrus female odour over an unpaired male odour,
in agreement with the social transmission of mate choice
[48]. Conversely, females that had the OT gene knocked out
did not show this preference for the male odours paired
with the oestrus female odour, suggesting OTKO females
do not show mate copying [48]. Similarly, females will
avoid and discriminate against the odour of a male associated
with an infected female, and this effect is also blocked by the
systemic administration of an OTR antagonist [49]. OT has
also been implicated in the observational learning of fear
[50,51]. Mice visually observing other mice receiving audi-
tory-conditioned foot shocks develop an aversion to the
conditioned stimulus, with inhibition of OT inputs to the cen-
tral amygdala abolishing this effect [21]. Another example of
OT mediating social learning was recently discovered in the
social transmission of maternal care behaviours. When
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virgin female mice observe mothers that they are co-housed
with perform maternal care for their pups, PVN OT neurons
in the virgin females become active and they learn to perform
those maternal care behaviours as well [52]. OT’s role in
maternal care will be further explored later in this review.

During STFP, the preference for a novel flavoured food
diet may be transmitted by odour cues from a ‘demonstrator’
animal to a same-sex, familiar ‘observer’ during social
interaction [42,53]. This paradigm can be manipulated to
increase difficulty, for example, by adding a delay between
the ‘demonstrator’–‘observer’ social interaction and the
‘observer’ food choice test [54]. In the difficult version of
the STFP paradigm, the duration of the socially acquired
food preference was prolonged in male rats that received sys-
temic OT either immediately after the social interaction or 2 h
before testing [55]. These findings suggest a facilitating role of
OT during the memory consolidation and retrieval process of
a socially learned food preference in male rats. Interestingly,
although oestrogens are known to be in involved in the regu-
lation of social learning, the few studies investigating the role
of OT during STFP use only male subjects [8]. In the male
brain, ‘male’ sex hormones such as testosterone may be con-
verted to oestrogens via the enzyme aromatase [56]. Notably,
OT may be activated by the activation of oestrogen receptors
following gene transcription [57–59]. Thus, perhaps oestro-
gens interact with the OT system in mediating the STFP,
as shown for social recognition; however, this possible
interaction has not to date been investigated.

OT’s role in social learning may be through its effect on
social salience and reward value through interactions with
dopamine. This proposal is supported by various findings:
(1) several brain regions (e.g. hypothalamus) co-express OT
and dopamine receptors; (2) OT and dopamine can produce
similar prosocial behaviours; (3) OT can directly affect dopa-
mine release [60–62]. Similar to OT in males, dopamine has
also been shown to directly affect social learning in female
mice. Dopamine receptor antagonists given systemically or
directly into the dorsal hippocampus disrupted social learn-
ing of food preferences of female mice [63,64]. As well as
this proposed interaction with dopamine, it may also be
hypothesized that there is a similar modulatory role for sex
hormones and OT in regulating social learning. Oestrogens
have been shown to regulate social learning and interact
with OT in the mediation of social recognition [8]. More
research is needed to determine if OT interacts with dopa-
mine and/or oestrogens to facilitate social learning. Also,
more research is needed to determine which brain regions
OT acts on to mediate social learning.
4. Pathogen detection and avoidance
As indicated previously, social recognition can occur for var-
ious aspects of an individual, including their health. For
example, animals recognize individuals carrying parasites
or pathogens and alter their behaviour to avoid interacting
and/or mating with them [65]. Being able to recognize
infected individuals is important as an increased risk of
exposure to parasites and pathogens is a consequence of
being social [66]. Many pathogens exploit their host’s social
behaviours and interactions between individuals, resulting
in an increased likelihood of pathogen transmission [66]. In
response to pathogen threat individuals exhibit a variety of
aversive and avoidant responses, including faecal avoidance,
escape behaviours, changes in location of habitat, and
changes in social behaviours [65]. In rodents, pathogen detec-
tion is primarily based on olfactory cues. Odours of infected/
parasitized individuals can cause avoidance responses,
whereas odours associated with healthy individuals tend to
promote approach behaviours [65,67,68]. OT mediates both
approach and avoidance responses to positive and negative
salient social information, respectively [61]. OT acting in the
nucleus accumbens and the ventral tegmental area facilitates
social approach, whereas aversive contexts that elicit social
vigilance and avoidance involve OT in the BNST [62]. In
addition, OT enhances social avoidance and aversive
responses to threatening stimuli to a greater extent in females
than in males [69].

OT has been shown to be involved in the recognition and
avoidance of infected individuals as wild-type females
avoided the odours of infected males and showed a prefer-
ence for the clean male odours, with the OTKO mice not
being able to show this preference or consistent avoidance
of the infected male odour [70]. Similarly, an OTR antagonist
attenuated the avoidance response of female and male rats to
odours of males treated with bacterial components [49,67,71].
This suggests that OT is involved in recognition of pathogens
from odours, an important function for choosing healthy
mates. Related to this, there is also evidence that OT’s effect
on social learning can also affect pathogen avoidance [48].
It was found that wild-type females will avoid the odour of
an infected male, but if that infected odour was also pre-
sented with the odour of an oestrus female the wild-type
females no longer avoided the infected male odour and
instead showed a preference for it [48]. However, female
OTKO mice did not show avoidance of the infected male
odour and did not show a preference for an infected male
odour paired with an oestrus female odour [48]. A similar
effect can be seen in an experiment examining the effect of
an OTR antagonist on female mice on their behaviour
towards male odours paired with infected female odour
[49]. The females treated with the vehicle showed avoidant
behaviour towards the odours of male mice pre-exposed to
infected females, but the females that received the systemic
injection of an OTR antagonist did not show this avoidance
behaviour [49]. These results suggest that OT plays an impor-
tant role in pathogen recognition and avoidance, as well as
social learning to overcome this avoidance. Although several
possible brain regions are potentially involved in pathogen
detection and avoidance, such as the BNST and OT-mediated
social vigilance, more research is required. In this regard a
region that has been implicated in the mediation of pathogen
avoidance and the expression of disgust-like avoidance
responses is the insular cortex [65,72,73]. OT affects the
activity of the insular cortex and its mediation of approach–
avoidance responses, thus further supporting a likely
mediation of pathogen avoidance [74].
5. Maternal care
Lastly, maternal care is another social behaviour OT has been
found to mediate. Maternal care is a group of behaviours,
such as licking and grooming, nursing, crouching over
pups, and retrieving pups from outside the nest, that are
exhibited toward the offspring to help their survival and
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development [75]. In view of the involvement of OT in preg-
nancy and lactation, the increased binding of OT, and
increased OTR mRNA expression during parturition in
various regions involved in social behaviour, the role of OT
in maternal care has received extensive attention [76].

OT has been found to be important for the onset of
maternal behaviours in various studies, where ICV adminis-
trations of OTR antagonists to parturient or lactating rats
either blocked the onset of or impaired the expression of
maternal care [75]. Similarly, if the PVN of pregnant rats is
lesioned before they give birth the onset of maternal care is
blocked [77]. However, once maternal care behaviours are
established OT seems to play a smaller role, as neither the
ICV administration of the OTR antagonist to rats on postpar-
tum day 5, nor lesioning the PVN on postpartum day 4
inhibited maternal care [77,78]. OT’s role in maternal care
has also been shown in mice. OTRKO in mothers resulted
in them often scattering pups around the cage [79]. Addition-
ally, when pups were placed by researchers in the corners of
the cage, mothers exhibited an increased latency to retrieve
them, and decreased amount of time spent crouching over
those pups [79]. Interestingly, in mice the OTR may have a
more significant role than OT itself, since in OTKO studies,
mothers showed normal maternal care towards their off-
spring, even though in a different study, knocking out OT
caused a reduction in licking of foster pups [79–81]. These
findings support a role for OT in maternal care.

Various brain regions (e.g. PVN, SON) have been found
to be important for the mediation of maternal behaviour in
rats by OT (figure 2). As previously noted, lesioning the
PVN before parturition blocked the onset of maternal care
[77]. OTR expression in the PVN is increased after birth,
and suckling by pups increases OT release in the PVN and
SON [82,83]. PVN OT neurons are also found to be activated
in virgin females that socially learn maternal care from
mothers, suggesting that OT is needed for the onset of
maternal care [52]. There is an additional circuit for maternal
care within the hypothalamus, where tyrosine hydroxylase
neurons in the anteroventral periventricular nucleus
(AVPV) directly connect to OT-producing cells in the PVN.
When these AVPV neurons are stimulated there is an
increase in OT levels as well as maternal care [84]. However,
ablation of these AVPV neurons reduces OT levels and
impairs maternal care [84]. This AVPV circuit appears to
be specific to PVN OT neurons as no connection has been
found between these neurons and OT-producing neurons
in the SON [84]. The presence of tyrosine hydroxylase in
these AVPV neurons suggests that they are dopaminergic,
although this has not been shown to date [84]. If they are
found to be dopaminergic, this would suggest another
social behaviour that is mediated by the interplay between
OT and dopamine.

Another brain region that is important for OT-mediated
maternal care is the MPOA (figure 2). In rats it has been
shown that, similar to the PVN and SON, during lactation
OTR expression is increased in the MPOA [85]. Addition-
ally, infusions of an OTR antagonist into the MPOA can
block the onset of maternal care as well as impair estab-
lished maternal care after 5 days of infusions [75,86].
Similarly, in a comparison between rats that spontaneously
showed high or low maternal care, the high maternal care
females also expressed higher OTR levels in the MPOA
[87]. OT in the MPOA, as well as the lateral preoptic area
(LPOA), also seems to be important for the development
of alloparental behaviour. When virgin female mice were
exposed repeatedly to pups, they tended to develop pup
retrieval behaviours, which were found to be associated
with increased OT concentrations in the MPOA and
LPOA [88]. Additionally, this effect could be blocked by
infusing an OTR antagonist into the preoptic area, targeting
the MPOA and LPOA [88].

Some other regions that have been implicated in OT-
mediated maternal care are the OB, the left auditory cortex
(lAC) and the mPFC (figure 2). OT levels in the OB were
found to increase around the time of parturition, and infu-
sions of OT into the OB of virgin rats induced maternal
care when exposed to pups, whereas infusions of an OTR
antagonist immediately after birth delayed the onset of
maternal care [89,90]. Results of studies giving intranasal
OT also support a role for OT acting in the OB to mediate
maternal care. In rats that had undergone caesarean deliv-
eries, which impairs maternal behaviours as well as OT
release due to over-excited OT neurons, intranasal adminis-
trations of OT restored maternal care and normalized OT
neuronal activity [91]. Similarly, in mice that received intrana-
sal administrations of OT, pup retrieval became more efficient
and total maternal care increased when reunited with pups
after separation [92]. It is important to note that intranasal
OT has been found to reach the cerebrospinal fluid and
deeper brain regions, such as the amygdala, so the effects
of intranasal OT on maternal care may be occurring in
these regions [93,94]. The lAC is involved in maternal care
through the processing of ultrasonic distress calls pups
make when separated from the nest, leading to retrieval beha-
viours by mothers [95]. Interestingly, it was found that only
the lAC was needed for processing these pup calls since inac-
tivating the right AC (rAC) with a GABA agonist had no
effect on pup retrieval but inactivating the lAC impaired it
[95]. This was associated with OTR expression, which was
found to be significantly higher in the lAC compared with
the rAC of mothers [95]. Also, it was found that in virgin
mice, when OT administration was paired with pup calls,
the lAC balanced inhibitory and excitatory postsynaptic
synapses to increase the call representation and social sal-
iency of the pup calls, which would trigger pup retrieval
behaviour [95]. Lastly, within the mPFC OT also acts to facili-
tate maternal care. The mPFC expresses OTR- and OT-
sensitive neurons and the region is activated by suckling
and systemic OT administrations in postpartum rats [96–
98]. It was also found that infusing an OTR antagonist into
the prelimbic region of the mPFC impaired pup retrieval
and pup-directed behaviours in postpartum rats [99].
Together this research shows the importance of OT in a
wide range of brain regions implicated in the mediation of
maternal behaviours. Whether or not these regions interact
in the expression of maternal behaviour, if this involves the
effects of OT, and what roles oestrogens and ERs play
remain to be investigated.
6. Conclusion
In this review, we have summarized the current knowledge
about the significant role OT plays in mediating many
social behaviours in females. We showed the importance of
OT for social recognition, some of the brain regions where
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Figure 2. Brain regions where oxytocin acts to mediate maternal care. The brain regions shown are where oxytocin or the OTR acts to mediate maternal care. Blue
circles represent regions in females where oxytocin mediates maternal care. MOB, main olfactory bulb; AOB, accessory olfactory bulb; mPFC, medial prefrontal cortex:
MPOA, medial preoptic area; PVN, paraventricular nucleus of the hypothalamus; MeA, mdial amygdala; lAC, left auditory cortex. (Online version in colour.)
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OT acts to mediate social recognition, and how OT interacts
with oestrogens to have this effect. Next, we explored some
of the existing research into the role OT plays in social learn-
ing and discussed dopamine and oestrogens as possible
mechanisms underlining OT’s modulation of social learning.
OT’s effect on pathogen detection and avoidance and the con-
nections between this behaviour and social recognition and
learning were reviewed next. Lastly, we discussed the role
OT plays in mediating maternal care behaviours and
explored the many brain regions where OT exerts these
effects.

The literature discussed also highlights gaps that require
more research in this field. Many of the reported studies on
how OT mediates social behaviour were conducted with
females and need to be expanded to males. It is important
to determine if the underlying mechanism of these beha-
viours functions the same way in both sexes, especially if
the development of treatments for disorders with disrupted
social behaviours are based on the research reported here.
Similarly, research that has only been developed in male
rodents needs to be expanded to females. For example,
some of the brain regions underlying OT-mediated social rec-
ognition in males, such as the lateral septum and MPOA,
have yet to be investigated in females.

Similarly, research into the brain regions where OT acts to
mediate social learning and pathogen avoidance in females is
needed. Also, current research into how OT mediates social
learning in females is limited and needs to be explored
more, including whether the proposed interactions with
dopamine and/or oestrogens are accurate. Lastly, while
OT’s role in maternal behaviours and the brain regions
where this occurs have been extensively studied, more
research is needed to explore whether these regions form
an interacting network underlying the functioning of
OT-dependent maternal behaviours.
As reported above, we have shown evidence of an inter-
action between oestrogens and OT in the mediation of
social recognition [19]. However, it is very likely that this
interaction is not specific to social recognition and extends
to other social behaviour domains, such as the ones described
in this review. This OT/oestrogen interaction may underlie
social learning and maternal behaviours, both of which are
also known to be regulated by hormones, as well as OT
[8,76]. Similarly, the interaction between dopamine and OT
suggested to underlie social learning may also extend to
other social behaviours. For example, it has been shown
that the formation of pair bonds in female prairie voles
requires both OT and dopamine, as blocking either the OTR
or the dopamine D2-type receptors in the nucleus accumbens
impairs the formation of partner preferences [100]. Addition-
ally, it has been suggested that OT and dopamine may work
together to increase social saliency and rewarding properties
in social learning. A similar OT/dopamine interplay may
make pup calls socially salient, leading to increased maternal
behaviour. It is very likely OT is interacting with both oestro-
gens and dopamine to regulate many of these social
behaviours. A target of future research should be the explora-
tion of the interactions between these systems to determine to
what extent and in which brain regions these interactions
occur.
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